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1.0 OBJECTIVE:

The present research aims toward developing structural theo-
ries which can be used to diagnose the fracture damage of struc-
tures and to assess the reliability of the dasaged structures.
Such theories, once verified experieentally, will be available
for design engineers to apply to the damageable structures. It
can also be the base for sethodology which analytical and test-
ing engineers can develop to diagnose and assess the reliability
ot the existing structures. It is assused that the structures
under consideration may develop dasage through extremse excita-
tions. Such damage can be defined as cracks occurred in the
structures, the asount of energy dissipation, the deformsation or
any combination of the three. Therefore, it is imsportant to
know when damage has occurred in a structure. When it has, it
is desirable to be able to locate it and estimate its extent.

Following the damage diagnosis, the principal components
for damage assesssent are (1) to develop theories for the relia-
bility assessment of damageable structures and estimate the dam-
age in a structure, and (2) to develop and improve sathesatical
models which simulate the behavior of dasageable structures.
These assessment theories will assist the engineers to achieve a
specified predictive accuracy in design, and to obtain a more
realistic assessment of the existing damageable structures.




2.0 RESEARCH PLANNING:

The research effort, sponsored by the Air Force of Scienti-
fic Research, aade progress during the research years 1981-1984
toward developing a consistent structural theory in dasage diag-
nosis and reliability assessaent (1 through 16]) (reference to
Section 10.0, publications by the principal investigator F. D.
Ju). The accomplishasents are in phenosenal correlation, in
structural msodeling and in quantitative diagnosis of fracture
damage. Deteraeainistic analysis was the goal if possible. In
real life, the excitation and even the structural characteris-~
tics can be randoa. Moreover, the ssasuresents say be inadequa-~-
te, inaccurate or garbled with noise. The reliability assess-
sent will have to be probabilistic. WHith the establishesent of a
practical theory in maind, a plan for three years ressarch was
proposed in 1984 and approved beginning January {, 198S.

2.1 Jransmissibility Theory:

The transsissibility is defined as the ratio between the
response and the excitation at two different stations on a struc-
ture. Cracks soften the structure and thus cause a change in
transmissibility. The locations of transducers which seasure
the transaissibilities as well as the locations of excitation
have been optisized for the necessary nusber of transducers and
4or the saximum seasuresent in the change of transaissibility.
Damping property in the structure is included in the sodel. The
research would propose an optisal rule to locate the response
transducers and the nusber of ssasuresents necessary in isola-
ting the location of a crack damage and in assessing the inten-

sity of the damsage.
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Lo

Expgrimgntal Verification Qf The fFractyre Hinge Theory
and_The Modal Fregquency Theory in Damage Diagnosis:

The analytical researches on the modal methods of damage
diangnn=i« (hnth the modal frequency theory and the transmissibi-
lity theory) are based on the theoretical modeling af the crack
with a fracture hinqge by the principal investigator 1,2,%,8,9,
11]. No experiment was then available to establish and to veri-
fy its existence. This phase of research was cansidered most
cratical in the decision to continue the research. For tha com—
pletion oé tha experimental research, the additinnal enuipment
and material supports from the Mechanical Engineering Depart-

ment , UNM and the Sandia National Laboratories are gratefully
acknaowl edged.

2.3 Uncertainty Thegrem:

The diagnostic theories are essentially inverse probless,
for which the solution say not exist or sultiple-valued. In the
direct problem, the structure and the dasage, the location and
the extent of fracture, are given. The pre— and the post—dasage
structure can be analyzed for its corresponding frequency equa-
tions. The pre~ and post-damage dynasic characteristics are,
therefore, enuserable. However, in the inverse probles, the dam-
age is not known g prigri. The sufficiency of sesasuresents is
always an uncertainty. Furthersore, as the dasage-softened
structure tends to lower the modal frequencies, the neighboring
sodal frequencies could very well experience & cross—over. in
the modal frequency theory, such cross—over cannot be ascer-
tained. The types of uncertainties have to be address in order
to caution the users of the theory and to suggest new theories
to improve the accuracy in using the theory.




2.4 Probabilistic Theory of Multiple Fracture Distribution:

The damage diagnosis for a single crack has been developed
successfully. However, given an external randos excitation, the
cracking location certainly is not a fixed pattern. The random-
ness of the first cracking location may be correlated to the sat-
erial of the e structures and the characteristics of the
external excitation. If the excitation, such as earthquake, is
extresme, it is anticipated that multiple cracks will occur. The
occurrence and location of the second crack say be correlated to
the first crack, and so on. In the sodal diagnostic theory,
because the § priori knowledge in the nuaber of cracks is
lacking, the diagnosis is uncertain. Accordingly, it is
necessary to develop the probability distribution of the
cracking location. The established probability distribution of
the cracking locations can help to identify multiple cracks at
least in the probabilistic sense.

2.5 podeling of Elastic-Plastic Multi-Degree—of-freedom
AMDF) Systems

The research is the completion of the study beginning with
the Single-Degree-of-Freedoa (SDF) system (4,5,7,10,14,1462. The
result establishes a sodel for a generic class of damaged struc-
tures. Hith such a nonlinear MDF stochastic eodel, ths response
of a damaged structure subjected to arbitrary randoa excitation
can then be analyzed. The procedure of characterizing the sys-
tem and its governing stochastic differential equation results
in uncoupled differential equations of its sean response and its
random component. The responses, their sosents and crosssosents
are solved for the statistical seasures of the cusulative defor-
mation and the cumulative energy of dissipation as damsage assess-

eent.




2.6 Beliability of SBtructures with Stiffness and Etrength
Rearadation:

then a structure of friction saterials, such as concrete,
is subjected to strong random excitation, the structure say
undergo inelastic deforsations during certain cycles of loading
with associated cyclic degradation in stiffness and strength.
The prediction of reliability and assesssent of damsage depend
upon the proper sodeling of such structures, taking into consi-~
deration of the randoa characteristics of the saterial variables
as well as the excitation., It has been observed experisentally
in the structural degradation sodels that the rate of degrada-
tion aay be related to the energy dissipation through the degra-
ding restoring hysteretic loop. The randoaness of the stiffness
and strength degradation is estisated with the realization of
the energy dissipation. The reliability, which is defined by
the saxiaum deforsation that never reaches an assused and deter-
ministic critical level, can then be evaluated based on the es-
tablished theory. HMHowever, the statistical relation between the
randoa stiffness degradation and the energy dissipation is an
assumed probability density function since currently there is no
data available.




3.0 TRANSMISSIBILITY THEORY:

The transaissibility theory uses the dynamic characteris-
tics of the structural responses. Gince the excitation say be
carried out at soae specific excitation frequencies or soese
known statistics of randoa excitations, the uncertainties aris-
ing through either insufficient seasuresents of aodal frequen-—
cies or frequency cross—-overs can thus be avoided. The theory
is, therefore, msost suitable for fracture diagnosis in complex
structures. The analytical sodel has the fracture characteris-
tics (e,9) as parasetric variables as in the sodal frequency
theory (168,19,30]. Hence, the general theory of circuit analogy
[2,3,15) is used. The vector of modal displacements can be de-
termained from given excitation F(t) = F. exp(iut) at a given
excitation station (135] as,

y=0 F. e®. 3.1)

With the known set of shape functions, the displacesent at any
point in the pre— or post-dasage structure can be computed.
Appropriate locations of response transducers, placed on the
structure, will yield the record of transaissibility for frac-
ture diagnosis.

3.1 Iranseissibility Measuresent:

Transaissibility (T) is defined as the sagnitude of the
ratio of acceleration at a response station on the structure to
the force applied at the excitation station on the structure;
that is

T = jw/F}, (3.2)

where the displacesent ‘w’ may be complex to take into considera-
tion of structural or viscous damping. To facilitate diagnosis,




the relative transaissibility (RT) is introduced as follows

T -7 T
RT-—‘—?—Q-;‘—x. (3.3)
o o
where the subscripts ¢ and o indicate with and without crack
respectively. When the structure is excited with the excitation
(amplitude, frequency and location) before and after a strong

dasage-causing excitation, the relative transasissibility becomses
RT - (yclyo) -1 (3.48)

where Ye and Yo are the aspljitudes at the sase response station
before and after the dasage. The relative transaissibility thus
ranges from -1 to ®. The liaits occur at the post- and pre—dam—-
age nodal points respectively for an undamped structure. Since
structural damping, however weak, always exists, it is possible
only to identify at a certain frequency a point of saallest asp-
litude of oscillation. A pseudo-node-point (PNP) thus defines a
point of locally minisum amplitude of lateral oscillation for a
specific frequency. The relative transaissibility is a function
of the excitation location and frequency, the location of the
response transducer and the fracture characteristics. The opti-
mal locations of excitation and response are decided by conve-
nience and saxiaum value of the relative transeaissibility for as
small a crack as possible.

3.2 Response Station:

The number of structural esmsbers to be instrusented for res-
ponse transducer is governed by the influence range, which is de-
fined by the proximity of & crack to a response station. A crack
at a significant distance from a transducer is said to be out-

side of the influence range of the response station. In a framse
structure, the frase cell, joined directly to an instrusented
member , is called a neighboring cell. Any crack, developed in a




neighboring cell, will affect significantly the relative trans-
sissibility of the instrusented sember. The influence range,
therefore, should include only the neighboring cells. The sini-
aum number of transducers for a frame structure is accordingly

N = nm/2 for even nm
(nm+1)/2 <¢or odd nam. (3.95)

Modal shape dictates the appropriate choice of transducer sem—
bers. For instance, at the fundasental frequency excitation,
there is no difference in choosing any wall (or column) for the
response station. Hence, Fig. 3.1 illustrates a three-story
four-span frame with possible locations of response transducers.
Figure 2 shows the responses measured by stations (T) on members
(16,21,22,24,27) respectively, for a crack on sember 17. The
curves in Figure 3.2 also illustrates the insensitive range of

the crack position on member 17,
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Fig. 3.1 A 3-story,4-span Fig. 3.2 Relative transaissi-
frame, ‘T’ denotes bility vs. crack loca-
response station tion (excitation on 13)

For esaxieum measures of relative transmissibility, it is
seen that the response station should be near the pseudo—node-
point. However, measurability aust also be considered. In




order to avoid aisreading the asasuresent, it is recoasended

that a pair of offset transducers be placed at each response
.t‘t ‘ O

3.3 Damage Diagnosis:

The relative frequency aesasures at various response sta-
tions can be used through their influence ranges for the loca-
tion of the cracked sssber. For instance, when the response
station on aember 21 records a relative transaissibility of
2.127. At such a high value, it can rest assured that the other
response stations will register relative transaissibility less
than 1. The cracked member is No. 21. However, if the value is
0.930, the cracked mesbers could be No. S5, 8, 20, or 21. MHember
S could be ruled out since softening of that sember would left-
shift the PNP to result in eost likely negative values for the
relative transaissibility. For other sesbers, the records of
other response stations can help to fdentify the damage. For
instance, an equal reading of the relative transaissibility on
the response station of No. 22 isplies syassetry. The cracked
msesber is then the coluan No. 8. I the relative transaissi-
bility on No. 22 response station is sasall, the crack will be on
the beam No. 20. VYet an increase of the reading on No. 22 res-
ponse station, the damaged sember will again be the beam No. 21
itself with the crack at a less sensitive location. There is no
deterministic location of the cracked position possible. How-
ever, the diagnostic result could bring the region of dasage
small enough to use some local diagnostic sethod. It was also
shown in Fig. 3.2 that there is a range of crack locations, in
which the crack damage does not produce sufficient dynaasic
change at a specific excitation frequency to allow efficient
diagnosis. The effective ranges of a 3Ix4 frame structure are

listed in Table 3.1 for the fundasental frequency excitation.
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The "hole” can be filled with some higher frequency excitation.
The effective ranges of the sase framse from the third msode fre-
qQuency excitation are listed in Table 2. Of course, the pseudo-
node-points of those instrusented sesbers for the third sode are
different from those of the fundasental sode. However, a similar
procedure may be taken for the placesent of the corresponding
transducers.

The transmissibility theory for structural fracture diagno-
sis avoids the sultiple frequency problem that occurs for both
of the last two uncertainties in the aodal frequency theory to
be explained in the uncertainty theory, Art. S5.0. The theory
proposes the use of a single excitation frequency at both pre-
and post-dasage ssasuresent of responses. The sethod is limited
only by the number of transducers to be placed on the structure.
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With the knowledge of the response-station influence range, the

danaged aesber can be singled out. It is, however, to be pointed

out that the transaissibility theory does not in itself diagnose
. the intensity of the fracture damage. Some combination usage of
local inspection technique or even the sodal frequency theory
could be employed for local and intensity identification.




4.0 EXPERIMENTAL DIAGNOSIS OF FRACTURE DAMAGE:

The investigation aims to verify experimentally that the
structural effect of a cracked section can be represented by an
equivalent spring—-loaded hinge, and to demonstrate experisen-—
tally the principle of fracture diagnhosis in structures by the
modal frequency theory [1,11).

4.1 The Modal Frequency Theory:

The modal frequency theory uses the structural dynamic con-
cept that the modal frequencies change as a result of structural
softening from the presence of a set of cracks of intensity
(yk}, at locations, (ck). The fracture intensity is related
through the concept of fracture hinge to the hinge spring const-
ant x. The softening of the structure is related to the fracture
hinge spring constant and the flexibility of the structure. For
each crack, it is defined by a sensitivity number J. For a beam
of rectangular cross-section

y
$ = E% - 3:(1-y2)%J AL (L) 1201 (4.1)
[=)

where El is the flexural stiffness, b is the half-depth, y=a’b
defines the crack depth and f(l)is the dimensionless fracture
stress intensity factor. The direct and the inverse problens,
relating the relative modal frequency changes (Ri) to the frac-
ture damage characteristics {ek, Jk) are thus:

R, = . (e ,3) (3.2)
(e, ), = g (R,) (4.3)

where R tl-(;i/ui), v, and ;i are the pre- and post-damage fre-
quencies of the i-th sode. For k-—number of cracks, it is neces-
sary to have 2k number of measures of relative frequency changes

‘Ri,' Because of the non-linear nature of the damage functions,




usually at least one additional assasure of frequency change is
needed to determine one unique solution from the set of multiple
solutions.

The experisent used twenty samples of aluminum cantilever
beam with milled slits to simulate cracks of controllable confi-

guration. There are five different single-crack locations along
the beam in the length eodulated dimensionless locations (e) =
{0.01388, 0.250, 0.51388, 0.70833, 0.79166). Two crack depths
(10, 20) mils correspond to {(y) =(0.21333, 0.42664), or (3} =
(0.006, 0.024). The elastic effect at the cantilever built-in
end, however small, is taken into consideration in the analyti-
cal model with an elastic torsional spring. The spring constant
is determined experimentally through comparison of the experimen-
tal frequencies and theoretical ones for the undamaged beam. The
elastic built-in end, therefore, can be assigned a sensitivity
number 00. The cracked beam is therefore modeled by a double-
hinge beam. Using Equation (4.2), the relative frequency chan-
ges can be plotted analytically as functions of the crack loca-
tion for the given crack geosetry. Figures 4.1 and 4.2 show res-—
pectively the Mode 1 and the Mode 2 frequency changes comparing
the experimsental measurements of relative frequency changes with
the theoretical curves for two given crack geometries. In the fi-
gures, the solid lines represents the theoretical relative modal
frequency variation, based on the average sensitivity number at
the built-in end. The dash lines and data points denote the act-
ual measured changes using individual built-in end sensitivity
numbers of the samples. The accuracy is better than 0.3% for the
beams with the slit closer to the built-in end. For beams with
the slit closer to the free end, the errors is as high as 0.7%.

-13~
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4.3 Ex imental i 3QNOS| r aARage:

When the built-in end sensitivity nuabers of the individual
sample beams are used in the double hinge model for the diagno-
sis of fracture damage, using the seasured modal frequencies,
the locations (e) of the dasage intensities, in teras of indivi-
dual fracture damage sensitivity numbers, are computed by the
computer program FISOL, developed for the diagnostic problem
[30]1, as listed in Table 4.1. The diagnostic solution can also
be expressed in the (e,9) phase plane as shown typically in
Figures 4.3 through 4.7, representing five different fracture
positions. In ass five figure, solid circles denote curves for
the relative frequency changes of the first aode; soled diamonds
those of the second mode and solid triangles those of the third
mode. The intersections of all three curves identify uniquely
the solutions of the damage characteristics pairs (e,8). The
diagnosed damage characteristics for the samples were compared
with the actual damage characteristics of individual samples.
The errors in location close to the built-in end are less than
0.05%. Up to around 1% near the free end.

-14-




TABLE 4.1
Semple Relative Pesitics l.-lnnt‘ Susber
Be. . ¢
Blaguaced Actuwsl  Mo(}) Bogesesd  Actws)  Ler.1d)
1 0.014 4.0134 0.012 0.00¢2 0.006 3.3
2 0. 0.2% 0.9 0.00%8 9.00¢ 3.3
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The research uses the experissntally cbtained pre- and post-
asasures modal frequencies to provide a positive identification
of the fracture dasage [18,19,22,26,32). The diagnustic accur-
acy for the two- hinge sodel (one hinge to sisulate the elastic
built-in end and another to simulate the crack) is better than

. 1.04 in crack locations and around 4% in damage intensities.

For cracks at sections of low resisting soments, the frequency
seasures will be at the level of noise, resulting in large err-
ors. Table 4.1 shows poor sesasuresents of frequency variations
for Samples Nos. 35, 10 and 14. These samples do have slits near
the free end, where the sosent is saall. There are, however,
other insufficient seasuresents, for which the fresquency varia-
tions are in the ssasuresent error range. As in the design of
the specimens, the slits locations were designed to avoid the
theoretical inflection points. However, because of the cospli-
ance of the built-in ends, slits at 0.2350 and 0.51389 are in the
neighborhood of sode-2 and -3 inflection points respectively.

- Yet, if the frequency variations in other sodes are sesasurable,
ingignificant change in a particular sodal frequency is an indi-
cator that the crack may occur near that sodal inflection point;
while the other modal frequency variations will serve to deter-
mine the dasage intensity.
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5.0 UNCERTAINTY THEORY:

In “he expression of the damage function, equation (4.3),
it is presumed that, for k-—numsber of cracks, (2k+1) sesasures of
frequency changes are available for diagnosing the cracks.
However, the numsber of cracks is generally not known a priori.
Furthermore, there may not be (2k+i) asasures of frequency
changes available. Uncertainties thus result associated
essentially with a damage configuration with multiple cracks.
The lack of a priori knowledge in excitation could also lead to
sisinformation in modal damage, leading toward large errors in
diagnosis. The investigation addresses these uncertainties.

S.1 Erequency Cross-—Qver:

The uncertainty of frequency cross—over can be illustrated

with two modal frequencies, v, and w. (without loss of genrality

i 3

let °i<° ) at undamaged state. After cracking occurs, the new

msodal fr:qucncios are correspondingly ;i and ;j' I+ the crack
occurs near the inflection point of the i-th modal shape, but if
the location happens to be near the saxisum mosent section of

the j-th sodal shape, ;i may not differ too such form “i' It is
conceivable that, for the new modal frequencies, we may record
;j<;i' In that case, without the knowledg® of the actual damage
configuration, the diagnostic assesblage of frequencies say well
confuse ;j to be the new frequency of the i-th sode and :i to be
the new frequency of the j-th sode. The phenosenon is a frequen-
cy cross—over, which would commonly occur for adjacent msodal $re-
quencies of close sagnitudes. The diagnostic result say be dis-
astrous. However, with the use of transmissibility theory, for
which the structure can be excited at chosen frequencies, the

problem of frequency cross—over can be alleviated.
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S.2 Close-Packed Multiple Cracks:

The investigation indicated that the first few characteris-
tic values of a bean with closely spacad sultiple cracks are, in
general close to those of a beaa with an equivalent single crack
whose sensitivity number is approxisately equal to the sua of
the individual sensitivity nusbers of the cracka on the original
beam. Furthereore, the location of the equivalent crack is gen-
erally within the region where the group of cracks is located.
Hence, equivalence of closely spaced cracks to a single crack
isplies that, in the process of dasage diagnosis, it is impossi-
ble to distinguish between closely spaced aultiple cracks and a
single crack.[19,26,30] The limit spacing for a cantilever beam
is shown in Fig. 35.1.

10;  § 2 N L]

8 = 174 for A1) Cracks
Accurscy in Spacing = 10
o ¢ * .00
o ¢ * .10
LN T 800

Dimenstonlass Spacing (x10°)

2 3 4 $ 4 ?
tumber of Cracks, &

Fig. 5.1 Limit of Spacing for Multiple Cracks
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S.3 Uncertainty from Inadequate Measurement:

The relative frequency changes at lower sodes, for a struc-
ture with sultiple cracks, sy be the same or within the seasure-
sent tolerance of a structure with fewer cracks. The clarifica-
tion can only be brought about with more ssasuresents of fre-
quency changes. Akgun and Ju [24,30] illustrated with the com-
parison of a single major crack against a group of ten uniforaly
spaced ainor cracks. The first two msodes yield the sase frequen-
cy change. Even the third mode shows only a difference of 10 *,
which is, for all practical purposes, unsesasurable.

For illustration, the following relative frequency changes
are assumed to have been computed froa the mesasured frequencies
‘-.0579. Rz-.osea. Rs-.0591. 1t
is to be deterained whether the damage mainly consists of one

of a damaged cantilever beam: R

crack. The (actual) characteristic values of a damaged beam are
computed from

(3
ac

- 8 97;,

)) are the characteristic values of the corresponding

e (S5.1)

(3
where (Bu

undasaged beam, the first three of which for a cantilever are
€1.8751, 4.6941, 7.8348). From Equation (5.1), the third sodal

characteristic value of the dasaged cantilever beam would be

(3)
’cc
one solution for a single crack located at e

=7.6192. The $irst two actual characteristic values yield
(3) o 372 with "
0.128 (corresponding to relative crack depth of y=.55 $or a slen-
derness ratio of b/L = ,035). These equivalent values are then
used in Equation (4.2) with k=1 to deteraine the third character
istic value due to the equivalent crack. The coaputation thus
yield 8::)-7.6176. Then, the error is

(3 (3) (3
error = (B.C G.Q )IB.C = ,0002.

It is quite reasonable to accept a solution, whose error is less




I —— —

than 0.1X. However, the given R’ data were actually generated
froma a problea with ten cracks of equal intensity (J was taken
to be .01 (i.@., y=.2) for all the cracks] located such that

c‘-.OOI. oi-.094 for 1 = 2.3,..,10, where .,

between cracks. Thus, in this case, even though the actual and
3)

defines the spacing

- equivalent g values satch closely, a firs diagnosis cannot be

reached.




6.0 PROBABILISTIC DISTRIBUTION OF MULTIPLE CRACKS IN
STRUCTURES:

The investigation considers the developsent of the probabi-
listic sethodology for the prediction of aultiple cracks distri-
bution in a structure of beam elements associated with indivi-
dual msodal oscillations. The probabilistic esasure of crack dis-
tribution can then be used for the probabilistic diagnosis of
crack damage (depth) and its lucation (spacing) under random
loading and resolve some of the intrinsic uncertainties in the
acdal theories of fracture diagnosis. The structural system con-
siders some randomness of asaterial strength. The arresting frac-
ture toughness is characterized as a random variable with the
appropriate probability distribution. The application of LEFM
in connection with the stress relief effect due to the presence
of crack suggests a aesans of predicting depth and spacing of ten-~
sion cracks at a given random msodal oscillation. The resulting
redistributed randoa bending stress (eoment) distribution is a
ssasure to compute the subsequent crack state. With postulation
that secondary cracking is dominantly affected by its ismediate-
ly preceding crack, the process of the successive cracking can
be treated as a Markov process. The analyses are perforamed,
under these probabilistic assumptions, for the first few rep-
resentative noramal sodes of interest. The probability distri-
bution of the overall structural systea therefore is obtained
depending on weight distribution of modes for a particular
excitation spectrum (281.

6.1 Crack Depth:

To estimate the depth of tension edge cracks in a beam, a
fundamental fracture mechanics theory is required to assess the

entire problem involved in crack initiation, propagation, and




arresting. For siaplicity in the present study, only sodel 1
crack is considered to initiate if the bending stress at the
extreme surface exceeds the cracking strength, a.- The crack
propagates when the crack edge intensity factor Kx reaches a
critical value ch' fracture toughness. For crack arresting,
we will assume that a crack wil! continue to propagate as long

as Kl remains greater than soese critical value Klo denoted as

the arresting fracture toughness. ch say be obtained via well-

defined test procedures. However, there is no test data avail-

able for Klo' Since both values of ch and K are expected to

lo
be of the same order of sagnitude, it does not seea unreasonable

to treat X as a unifora random variable in (D.ch).

1o

S0 long as the rate of crack growth does not approach the
spead of propagation of an elastic disturbance, the computed KI
on a basis of static elastic theory should be & good approxisa-
tion to describe the arresting process. Analytical solutions for
Kl only exist for selected simple cases. The solution of an edge
crack in half-plane is approximately applied to our beam eaodel
with edge crack length d in the presence o+ the bending stress

field.

d
Ky = IOI.IZJId 52— o, (1-2y/t)dy 6.1)

x{(d"~y") b

where o, is the outer fibre bending stress. Kx is readily ob-

b
tained by integration:
c(K, /0, ) = (x/8)0 - N> = §(m), (6.2)

1'%
where c = Jx/t/4.48, N = d/t, and t is the depth of the beaa.

The variation of Kl with crack depth paraseter 7 is scheaa-

tically plotted in Figure 6.1, wherein f(7n) assumes its saxisum
value ¥-.x at n..x. As the figures shows, if c(Kllcb)>+.‘x. no

crack will occur. Thus, the cracking strength o, can be related

to ch by applying (6.2) at n..x:
(6.3}

C(chlar) = §

max '




< Ky/oy,

"
0.0 0.2 0.4 66 02 10
"

Fig. 6.1 Variation of K, with Crack Length

)

which yields o = cK_ /4 Equivalently, it siaply says that

crack occurs if ab>o:f A::z shown in the same figure, if cKIolcb
is less than f.‘x. there are two positive real value solutions

"c and no with nc<n°. nc is interpreted as the norsalized cri-

tical crack length for unstable cracking to propagate and no say
be treated as the final crack length being arrested. Since KIo
is assumed to vary within (D,ch), the prediction of N needs the
random variable analysis. The norsalized sesan crack depth Eld/t]

can be computed as:

0.57(x/3)(0,_/0_), g <o
Etase1 =/ br b - (6.4)
l[0.52-0.lscos(54/3)-0.5co50-0.75cos(0/3)](a/S)coss
a, >0
b r
where cosd = -crlab.
6.2 Crack Spacing and Stress Relief:

The quantity of principal importance to the problea of
crack spacing is the stress perturbation in the plane in which
cracks originate, usually the free surface. The elastic stress
perturbation due to the presence of crack in the sesmi-infinite
sedium, used with the modified Griffith theory of msacroscopic
fracture, suggests a means of predicting spacing of tension
cracks in terms of stress field and sesasurable properties. Since
the modal theories of fracture diagnosis are non-destructive and
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use low level oscillation, the ssasuresents are carried out in
the elastic range of the structure, within which the characteri-
zation of the fracture dasage can be defined with LEFM. Figure
6.2 illustrates the noresalized surface tangential stress relief,

gs(t) and gg(t), respectively, for step and linear distribution
of noraal stresses on the crack surface. The non-dissnsional
variable § denotes the distance seasure from the crack.

-3+

Strees Relle?

-th

[Y
. ./‘

Fig.6.2 Normalized Edge Surface Bending Stress Relief

For a beam with crack depth d and the linear initial bend-
ing stress distribution across the thickness t, the bending
stress relief g(f) can be computed from the combination of g‘(E)
and ge(t) within the linear elastic range.

QE) = g_(8) - 2(d/t) g (E). 6.5)
6.3 The Moda) Cracking Probability of Beam with Uniformly-
ri r n rength

amplitude Ei idal Loadings

One commonly used method of numerical sisulation of earth-
qQuakes is to expand a periodic function into a series of sinu-

. soidal waves.




n
6(t) = L Ai Sin(uit+0i), (6.6)
i=]

where Ai is the amplitude, w, is the excitation frequency, and
’i is the phase angle, respectively, of the i—th contributing
sinusoid. Introducing randomness to ‘i’ a wide band randoa ex-—
citation can be generated. In the present paper, a simple sinu-
spidal ground eotion 6(t}) = A sin(wt) is taken with A as random
variable.

For clarity convenience, the notation "(j,k) beam” is used
to identify the state of a beam being in j—-th mode and possess-—
ing k numbers of cracks. The associated quantities are then exp-
ressed by subscript state parameter (j,k). 'Thus, for a general
N-crack beam system (djk’ ejk) is the fracture damage character-
istic pair denoting the k—-th crack’s depth and its location at
j-th eode.

The spacing ‘jk is defined as the location difference bet-

ween two sequential cracks, The expression for

® - -
the random edge surface stress Sjk(E,t). its associated positive
quantity Xjk(t.t), and its related positive random quantity

ij(t,t) beyond the random crack strength R are:

Sjk(t,t) = A sin(at)ojk(t), 6.7)

xjk(t.t) = Sjk(t.t) H[Sjk(t,t)l, (6.8)
and

ij(t,t) = tsjk(!,t)-R] Htsjk(t,t)-RJ. 6.9

where A and R are uniformly distributed in, (O,nar) and (O.cr),
respectively, H is the Heavyside function, and ij(t) is the
corresponding modal surface stress shape of the (j,k) beaa.
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6.4 Solution Procedure:

The solution of the esan time cycle of cracking, the praba-
bility of cracking, and the axial probability distribution of
cracking can be formsalized with procedure steps, Steps 1-3.
Steps 4 and S5 compute the eean spacing between sequential cracks
and the sean depth.

Step (1) For (j,k) beam with damage pair (djk"jk)' update the
modal bending shape function pjk(t) and obtain Sjktt,t). Xjk(t,t)

and ij(t.t) from Equations (6.7-6.9).

ij(t) = ’j.k-l('jk’gjk(t_'jk)*'j,k-l(E" ejk(£<1 (6,10)

Step (2) Under assumption 2, the msean tise cycle @ for the suc-

ceeding cracking and its cracking probability F. +AT) can

J,k+l(zuax
be evaluated in conjunction with A (F st):
Jk "max

W) = Pris, ( JtI>R] =
X

|max Jk e-a

+ PriA sin(ut)mjk(Enax,t)>R] =

ljk(t

_ 1 -1/(n "“(“t”jk(tmax)’ 1<n¢jk(tn.x)sxn(ut)

0 otherwise 6.11)

T
m = ¢xpt—Joxjk(t.ax,v)qu /

T
/<1 - .xpt-j A By s 7T, (6.12)

and

F (% ooT) =

Jsk+1l “max

t ,trdta” (6.13)

T
= l-cxp[-Joljk( max

Step (3) With the evaluation of < Ethk(t.t)] >y, the axial pro-

bability density function p. (E,t) can be computed:

Joek+l

&),
£6.14)

: - 4 —1
E[ij(t,t)] = [n stn(ut)ojk(t)/b 2 * n sintot) ik




a aT
<E[ij(t,t)l> = e JOE[ij(t,r) dr =

117
=2 IOE(YJk(E.r) dr, (6.15)
and
<ELY, (E,mT)1>
pj k+1(t.nT) = = =
’ I <ELY,, (£,mT) 3> d2
®jk Ik
<ELY, (£, 1>
* T1 ’ (6.16)
Iegirvjk(e,1)1> at
where ejk<t<1.
tep (4) Computations for mean spacing 5. kel and crack location
| 4
.j.k+1 are:
1
kel " Iegz-ejk)pj,k+l(t.-7)dt. (6.17)
and @; ka1 = %5,ke1 T 5kt

tep (5) For the (k+1)—-th crack produced at ej K+
]

mean stress <Etxjk(ej’k+1,nT)J> up to time aT is:

1 the temporal

<Etxjk(e T)1> =

Jok+1

aT
-
- aT o E[Xjk(e 1,?) dr =

3 k+
1
=1 Io[ X (8 g™ T (6.18)

Replacing ob in Equation (6.4) by <Etxjk‘ej,k+

depth d; L+1° Jok+1' ®5 K+l
new crack state, nasely, (j,k+1) beam. The loop completes and

returns to step (1).

1,nT)J) yields

This new damage pair (d ) defines a




7.0 PMODELING OF ELASTIC-PLASTIC S8TRUCTURES:

This investigation established a procedure for the probabi-
listic characterization of a damaged structure, which is msodeled
as a nonlinear elastic-plastic MDF system. The random excitation
may be either stationary or nonstationary. The stiffness aatrix
is nonlinear to simulate the elastoplastic behavior of a damaged
structure. The stiffness wmatrix is also random to characterize
the material and environmental variations. The governing stoch-
astic differential equation is resolved into one for the mean
response and another for its random component. Responses, their
statistical moments and cross—moments are solved with discrete-
time recurrence formulations. The probability of structural
damage or the structural reliability, is then estimsated by the
upper bound of the cumulative energy dissipation. The formalism
of approach in formulating the solutions for a generic class of
MDF nonlinear problems with Prandt-Reuss material permits ready
adaptation to REM analysis. [17,31]

7.1 Formulation:

The governing differential equation of motion for a
non-linear structural framework, modeled as a discrete MDF

system, can be written as

mz + ¢z + k(z) 2z = ¢ (7.1)

where m, c, k(z) are the NxN sass, damping, and stiffness mat-
rices, ¥ is the external load vectorg; z,i.; are the displacement,
velocity, and acceleration vectors of the system. In this inves~
tigation a,c are assumed to be deterministic and constant. The
stiffness is represented by a matrix of random variable which may
correlate to the response z(t). The quantities ¢, k(z), and 2

can be resolved as follows:

"—'——J



e ——...

§ = @tF, Kk(z) = A(uI+K, 1z = 0+Z, (7.2)

where @, A and { are sean values that
ELf] = ¢, Elk(z)] = A(p), Elz] = p. (7.3

It is noted that, (7.2), the nonlinear properties of stiffness
are assumed to be reflected by its sean component. The random-
ness of stiffness is represented by K which is a matrix of random
variables. F is a non—stationary band-limited white noise. Also
it is noted that the random quantities, F, K and 2 introduced in
(7.2) are all zero—-sean. Substitution of (7.2) into (7.1) vyields

B(u+2) + c(u+2) + [A(RI+KI(p+Z) = g+F. (7.4)

Taking expectation on both sides of the above equation results in
. the msean values equation,

mu + cp + dA{pp = p~ELkz2]. (7.9)

The difference of (7.5) and (7.4) yields the equation for the
random coaponent.

@Z + cZ + ApIZ = F + ECKZ1 - KZ ~ Kp. (7.6)

In (7.5) and (7.48), KZ and ELKZ] being the product of two random
quantities, are higher order terms. By neglecting these terss,
(7.5) and (/.6) are reduced to the following expressions:

ap +cp + R(p) = ¢, (7.7)

@ + ¢cZ + A2 =F - Ku. (7.8)
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The omission of the higher order terms are postulated for the MDF
systems. For SDF systems, the errors in response and its statis-

tics resulting from omission of the higher order terass is refer—
red to [17,31].

7.2 Nonlinear Model:

The investigation treated a generic class of elasto—plastic
material that satisfies the Prandtl—Reuss relationship. For a
beam with symmetric cross section, the soment for any section at
location x, measured longitudinally along the beam, at pure

‘bending, is

C
M(x) = EIy” - E j €_(x,h) hwh) dh, (7.9
-c

. where E is the Young’'s modulus, I is the moment of inertia of the
cross section, y” is the second derivative of the deflection with
. respect to the coordinate x, ¢ is the half depth of the symmetric
cross section, eo(x,h) is the permanent set at locations x and
h. All external load, without loss of generality, are resolved

at nodal point. Hence

C

b4
Ely' =E | du [ «_ cu,;ohwinidn + dc x? + cx + Cy, (7.10)
o c © 21 2 3

3 2
(7.11)

. 4 \'4 c
Ely = EJ dv I du I €_(u,mhwihidh + 3¢
o 0 c ©

The constants C i = 1l,...y84 are prescribed from boundary condi-

i’
tions. The axial strain can be evaluated with an analogous ap-

proach.

c
. |
e.(x) = Ea P + E ceo(u.h) wih) dhl, (7.12)




where P is the axial force, L is the length of the beam, A is the
cross-sectional area. The persanent sets are yet to be deter-
mined. For that purpose an iteration schese is developed using a
finite difference aethod that the displacesent at tiese t‘“1 can
be evaluated from (7.7) by using the central difference sethod;

Bipg =0y [2ap, ¢ Agu, , + Bt7Le;Rin,DI, (7.13)
where, A, = 1 cot + m, and Ay = 1cot - . 7.18)

It is assumed that the system starts at rest.

In the iteration scheme, the neutral axis does not change
throughout the computation. Because of this assumption, the
permanent set will first converge, then alternate between two
values. In such cases an approxisation for the permanent sets
can be established by averaging the two values.

Since (7.8) characterizes the random component of the struc-

tural response, the displacement response at time t can be

j+1
solved by using central difference approximation. Nawmely,

-1 2 2
Zj+1 = A1 (Azjzj + Aszj_1 + Ot Fj at Kuj), (7.15)
where Al and A3 are given by (7.14) and
2
A2j = 2m at L(uj), (7.16)

in which l(pj) is the equivalent stiffness matrix at tiese tj; the
s—th column in l(uj) is by definition,

3R(u )
A (p) = ——— (7.17)
s ') an
3
. . T
The response covariance matrix E[Zj+12j+1] can then be

established.

-32-




7.2 Damsage Diagnosis:

Structural dasage resulting from low-—cycle loading say use
the cumulative cycle persanent set of the cyclic energy
dissipation, if it is postulated that the cumulative damage is
related to the energy dissipation in the system. In a saall
element of a beam, the energy dissipated in the system due to
material nonlinearity can be expressed as

€
E = 8VE Iotctt) € ()] da. (7.18)

The total energy dissipation for a beam due to saterial nonlinear-
ity is therefore obtained by summing up all the small elements,

resulting in

Ev =L E =

av *®
= L &V E Cle(jt)-e_(iBt)Ile(<j+1>80)—€ (881 (7.19)
av

where Ev is the total energy dissipated in a beam. It is noted
that e(t), eo(t) are obtained from (7.7) which represents the
mean of the response. In this sense, the energy dissipation cal-
culated by (7.19) can be used to represent the sesan value of the
energy dissipation. The result is used to predict an upper bound
of the energy dissipation seasure, considering Markov inequality,

Prixyd) ¢ ELxd (7.20)

where d is a positive constant. If total energy dissipation is a
maximum damage criterion, the probability of damage is therefore
defined by (7.20) with d representing the material constant of
permissible total energy dissipation. Numerical examples are

. referred to [17,311.
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8.0 RELIABILITY OF STRUCTURES WITH STIFFNESES AND STRENGTH
DEBRADATION:

When a structure of frictional saterials, such as reinforced
concrete, is subjected to strong random excitations, the struc-
ture may undergo inelastic deformsations during certain cycles of
loading, with associated cyclic degradation in stiffness or
strength, or both. The exact nature of system degradation is &
function of the structural msaterials and the configuration, and
may vary considerably from structure to structure. Basically,
the deteriorated phenomenon is due to the extension of crack in
the concrete, bond deterioration, bar slippage, shear deforsa-
tion, and inelastic deformation of reinforcesent. The aost im-
portant factor is the opening and closing of the crack in the
structure that alternate between compression and tension during
the response cycle. Thus, the opening and closing of these
cracks may eventually lead to a deteriorated stiffness and
strength. As a consequence, energy is dissipated through the
degradated hysteresis. It has been experimsentally verified by Ju
et al [14] that the rate of degradation is related to the energy
dissipation through the degrading restoring hysteretic loop.

Quite frequently, the excitations of the structural system
are not predictable. Examples of such loading sources are esarth-
quake, wind, aerodynamic loads, etc. Under these types of excita-
tions, the structural response apparently behaves randomly. The
random characteristics of the loading sources together with the
random system degradation lead to the desire of a coherent damage
model that can be used to assess the reliability of such a sys-
tem. In practice, the randomness of the excitation, together
with the randomness of the system degradation, will lead to the
randamness of the deteriorated restoring force to be a random
process, which we refer as structural random noise. The predic-
tion of reliability and assessment of damage depend upon the




proper sodeling of such structures, taking into consideration the

randons characteristics of the saterials as well as the excita-
tions. Therefore, the present investigation establishes such a
msodel that can be used to predict the liability of a generic
nonlinear structural systea, especially for those that show
stiffness and strength degradation.

8.1 reaul jont

The nonlinear system to be considered herein is a single-
degree—-of—freedom (SDF) system, with the governing differential
equation of motion

m2z +cz + R(z) = £(t), (8.1)

N where a,c are the aass and damping, respectively; f(t) is the ex-
ternal random excitation, z, i. z are the displacesent, velocity
and acceleration responses of the structural system, respective-
ly. R(2) is the system hysteretic restoring force. In this inves-
tigation, m, ¢ are assumed to be deterministic and constant. Fur-
ther, it is assumed that f(t) is a band limited zero-sean station
ary white noise with constant power spectral density L F9Y) nasely,

ECf(t)f(x)I= Q‘{C(t—l). (8.2}

The behavior of the system hysteretic restoring force for a sys-
tem that shows stiffness and strength degradation has been stud-
ied extensively. Among those systes—-degradation hysteretic mso-
dels, the Q-hysteresis can reproduce the behavior of systes deg-
radation in a sisaple and efficient way. Hence, it is adopted
here in the present study to describe the deterainistic behavior
of system degradation. The rules of Q-hysteresis are susmsarized
in Figure 8.1, in which k’ is the initial stiffness. The unload-

ing stiffness k, is determined by:

3

Y
. k3 =k, (zy/z.‘xJ ' y = 0.4. (8.3)
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Fig. 8.1 The @-hysteresis

1t is noted that the parameters ki' i*1,...5 in Figure 8.1 define
the rules of loading, unloading and loading reversal. On a simp-
ler level, all these parameters can be assumed that they do not
sanifest any randomness. However, on a more realistic level, all
these parameters cannot accurately describe the original behavior
of system degradation. Moreover, due to the material randomness,
even two identical samples cannot yield the same hysteretic
curve. Therefore, the error that between real behavior of system
degradation and the aodel we developed, together with the random
characteristics of the saterial, lead us to the realization that
the hysteretic restoring force sust behave randomly. Further, in
view of the fact that the restoring force is a function of the
random displacement response, the randosness of the hysteretic
restoring force must be time dependent. Without loss of
generality, the hysteretic restoring force can be rewritten as

R = R(at,....ab) (8.4)

where a, = ki 2 i®1,...,5, @ =2, By using the Taylor’'s expan-
sion, R can be expanded about the means of its underlying random

parameters to obtain
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where B;= E[ail. g.= @ =K, i-1,...6. It is noted that the deri-

vatives in the abote equation are evaluated at By i=l,...6. The
N(El,....tb) is the generalized structural noise. The structural
noise arises from the uncertainty of the saterials, the errors in
the model and the randomness of the response. Apparently, the
structural noise is a wide band random process. A typical such
structural noise is shown in Figure 8.2. According to [17], the
structural noise can be approximately assumed to be zero-sean
with less than 1 percent error. Moreover, from Figure 8.2 it can
be seen that the structural noise indeed shows the property of

zero-mean. Substitution of Equation (8.5) into (8.1) yields

6640.0
(29500)

Structural Moise, N{t), 7 (N)

-7050.0 1 ) y q
(31300.) o, 0.6 1.2 1.8 2.4 3.0
TIME (SEC)

Fig. 8.2 A Typical Example of Structural Noise
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Mz + cz + R(2) + N(t) = §(t). (B.6)

The structural noise N(t) is introduced in the above equation and
is presented as a function of tise for sisplicity. In order to
specify the characteristics of a random process, the probability
structure of such a random process sust be given. Namely, the pro-
bability density functions of the random process up to infinite
order aust be known. In practice, this is impossible. However,
the difficulty is alleviated by adding more restriction when eva-
luating the structural noise. 1In the present investigation, the
restriction is sade by adding the energy dissipation as a given
condition. In such a situation, the autocorrelation function of
the structural noise can be evaluated. According to the above
statements, if the wide band random noise assumption is sade, the
autocorrelation function can be written as

E[N(t)N(t+s)lEd, z(t)T = S(t)&(s).

It is noted that S(t) is time dependent which reflects the nonsta-
tionary characteristics of N(t).

Furthermore, if the input excitation f(t) is assumed to a
band-limited white noise, it becomes necessary that the theory of
Markov process needs to be used here. In view of this, the tran-
sition probability density function is defined as

P = P(t,0,t+0t,y) = P(z<t+nt)-y|z(t)-t. Ey- (8.8)

Equation (6) implies that the random process at time t+at is eva-
luated with the conditions that not only z(t)=l has to be given,
but also the energy dissipation sequence Ed aust be realized.

The energy dissipation sequence Ed’ therefore, may be viewed as
the random environment. Given different environments, the transi-

tion probability that governs the random evolution varies.Similar




to (8.8), the first and second soments of the random increments
that are associated with z(t) can be defined as

pit) = lim 1 Ecnzlz(t)ar, E.3, 8.9)

at+0 at d

2 lim _3 2
o) = o 0 ot Efaz | z(t)=C, E 1. {8.10)

The Kolmogorov backward equation still holds if the deriva-
tions are followed. Thé r¢cson is that the given randoa environ-
sents didn 't change the characteristics of pu(t), o(t), and P.
Hence, from (8.8 - 8.10), the Kolmogaorov backward equation is

at’
where t° = t+8t, with initial condition

2 .2
_ 3P L . ory 2B act ), . Pt Lt ) (g.11)

P(t’c't"y) = ‘(C-Y). (8. 12)

It is reasonable to assume that P is stationary within time
[t,t°] if Ot is small. Based upon this assumption, (8.11) becomes

rl [ 2 2P .
P(t t L .t ,v) g (t) 3y P(r,C.t°,y)
at = u(t) or + 55 Y (8.13)
The evaluation of p(t) and cz(t) are discussed briefly as
follows. Let Az=Au+AZ where u=Elz]). When taking conditional
expectation on Az, from Equation (8.6) it is easy to show that

t
plt) = udt) + iEtJ exp{-£(t-1) >4 (r)dr1 = O, (8.14)
0

since f(t) is zero-mean, f(t) and Ed are independent. Similarly,
from Equation (8.6)

az(t) =
t° .t

=210 1 2 aef ay h(r)h(y)w(t'-f)v<t'-v’|=‘t"‘-5 )3

(8.15)




in which g(t)=f(t)-N(t), hi(t)=l-exp(—ct/a), where uses have been
aade the facts that Au=0(4t) and €(t) is zero—sean.

Equation (8.15) can be reduced further by noting the fact
that EIN(t)F(t)])=0 since ¥(t) is white noise [17]. The integra-
tion can be carried out to result in [211]

oo 2 re, 4500 It1-wxp t—ct/m) 32, (8.16)

It is noted that oztt) is also a random variable at time t since
it contains S(t). Also oz(t) approaches to :-2t9{{+8(t)] as t-o.
The solution of Equation (8.13) can be solved using the Fourier
transform if u(t) and oz(t) are given by (8.14 and 8.15), respec~
tively. The solution is Gaussian distribution with paraseters

and V; naaely,

P(t,C,t°,y,S(t)) = Ptz(t')ny'z(t)sc, E)l =

I S R ¥
v exp{ 2(y Y/ (8.17)
where
=2 ¢Zﬂ - st L. _251
V=c [w{f+8(t)3(t [1-exp( )J*E—tl-exp( N

It is noted that the transition probability given by (8.17) con-
tains a random variable. This eeans that the characteristics of
the transition probability is random and its value depends upon
the given condition of the energy dissipation. This satisfies
the original assumption which states that given different environ-
ments, the transition probability that governs the randoma evolu-
tion varies. The transition probability that contains random
variables are called Markov chain in random environment (MCRE).

iscrete Form tion:

The transition probability established above is based on the
assumption that z(t) is continuous. However, in digital compu-
tation, a discretized form is necessary. Also, the nonlinear




characteristics of R(z) and the nonstationary property of N(t)
make the transition probability solved above only valid within
small time intervals. Hence, these conditions necessitate the
use of discretized form of (8.17). If discrete fora is used,
Equation (8.17) becomes

(P(n,t,n*l,y,sn)) = Pn =
= {p(zn*lty zn-t'zn—l""'zo' Ed) (8.18)

It is noted that zo,....z are also put into the given condi-~

n-1
tion since the future may not be independent of the past for this

case. The n—step transition probability is given by (8.20).

n
(n)
P - (P(zn+lcy‘z°, ES) = P_ }LP" (8.19)
where Pj, Jel,..4nn are the transition probability at tise step j,
and P° is the initial probability distribution of z,- The proof

of (B.19) is referred to [211].

8.3 13 ipn:

There are two cases that can be considered here. The first
case is that each of the Sn is independent. For such a case, the
structural response is then a random process soving in the aver-
age environment. The mean of the n-step transition probability,
in this case, is obtained by taking expectation on both sides of
(8.19) yielding

n
ecr™ 1 = ecp 3 TTECP, 3, (8.20)

where E[Pj] is the sean transition probability at tise j. This is
a special case of MCRE. It other words, z(t) is a nonstationary

Markov chain with one step transition probability E[le.
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It is very interesting to note that EtP(n.t,n+1,y,Sn)] is

still a valid representation of a probability density function,
where P(n,t,n+1,y,Sn)J is given by (8.18). The reason can be seen
by noting that

E[J P(n,T,n+1,y,5 ) dyl = I ELP(n,C,n+1,y,S )1dy = 1.
Y Y (8.21)

By using the definition of the expectation, (8.21) can be re-

written as

Iy dy Jy P(n,t,n*l,y,sn) P(Sn) dsn -
- Isnp(sn)dsnjy P(n,C,n+1,y,S ) dy = 1, (8.22)

where P(Sn) is the probability density function of Sn at time
step n. Equation (8.22) can be used as a tool for the numerical
computation and will be discussed in Section 8.2.

The second case is that Sn, ne=1,2,... are also Markovian.
In such a case, the one step transition probability which is
given by (8.9). It can be rewritten by using the law of total
probability.
P(j.t.j+1,y.8j) =
=L E P (5,0,5+1,y,5.) P(S.lS ) P(S ) =
J Jl o o
§$.5
J o
* ]
= g g ..g P (J,C.J+1,y,8j)P(Sj|5j_1)..P(51ISQ)P(So), (8.23)
J"Ji-1"0o

where Sj in P‘(j.f,j+l,y,sj) is a given, deterministic value. 1I¥

we let
<P(si|si_1)) =r, i=1,..43 (8.24)
and
PP(s )} =T _, (8.25)
Q o
then

J
T r- (8.28)
i=1

The n~step transition probability then can be evaluated based

P = (P(5,0,35+1,y,5,)) = P’(j,c.j+1,y.sj)

upon (8.19). Numerical examples are referred to [21].




9.0 CHARACTERIZATION OF DAMAGE USING THE CONCEPT OF STRUCTURAL
POMER

This investigation aims to establish a theory, using the
structural powsr to characterize the nonlinear structures. Since
a damaged structure displays uniquely the nonlinear character-
istic, the established theory shall be employed to assess and to
diagnose the damaged structure and to describe the extent of
damage from the standpoint of energy criterion. In addition, the
established structural power can also be a saterial character-
istic for nonlinear structures. 8Such characteristic is important
for identification of nonlinear structure as well as dasage.

The fundamental purpose of structures is to protect or
shield the occupants. However, while structures msay be designed
adequately for the anticipated excitation, many develop serious
structural damage due to unexpected severe loadings or deteriora-
tion from exposure to elesents. As a consequence, the structure
may behave nonlinearly during excitation. Furthersore, for most
cases the nonlinear behavior occurs even for undamaged status.
The nonlinearity must be characterized in order to predict the -
structural response.

Currently, the available techniques and theories for damage
diagnosis are (i) visual observation (ii) volumetric, such as
X-ray, radiography and sagnetic field sethods, (iii) dynamic me-
thods, such as the acoustic wave and modal theories. The first
two methods, visual and volumetric, are essentially local, thus
not applicable to hard-to-reach locations or to complex struc-
tures. Hence, they cannot be adapted to establish the safety and
reliability of a structure for future excitation. In other words,
the engineer cannot accurately estisate the reliability for the
damaged structure without an analytical theory to support a relia-
bility analysis. The dynamic theories are based upon the sesasure-
ment of structural dynamics characteristics prior to and after
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the dasage [19], or upon the recording of structural response dur-
ing a known strong excitation [13,16,17,21). The dynamic theories

are known to have uncertainties. A probabilistic theory is being

developed. The strong excitation diagnostic theory dspsnds on an

accurate nonlinear system identification.

The material nonlinearity for most cases is characterized by
its force Jdeformation relationship. For example, the force-defor-
mation hysteretic curves for elasto—-plastic, work—-hardening,
strength degradation, or softening materials display different
shapes which say be displacement dependent. 1f the force—-deforma-
tion relationship is known precisely, it is possible that engin-—-
eers can predict the structural response with good accuracy.

The problem here is that can we know precisely the nonlinear
force-deformation behavior? For static case, the answer probably
is positive, since the static assumption excludes the frequency
dependent property. The saterial then may behave closely as
those obtained in lab tests. However, when transient analyses
are desired, many structures may or may not follow the rules
which are developed in accordance with the lab test. For such a
case, the difficulty is to measure the saterial restoring force
during extreme excitation when structure behaves nonlinearly.

In many cases, it is extremely difficult to measure the
structural hysteretic restoring force due to the environsent
restriction. As a consequence, the predicted structural response,
using lab developed material model, doesn’'t correlated very well
with the measured response, such as acceleration. The present
paper, therefore, aims to establish an alternate approach to
characterize the nonlinear structural behavior. The established
material characteristic can be employed to define the
nonlinearity of the structure during a dynamsic response, to model
the structural system behavior, and to predict the damage status
of the structure.




7.1 Foraulation of Structural Power Model:

The nonlinear system considered herein is of single-degree-of-
freedom (SDF), shown in Figure 9.1, with the governing differen-
tial equation of motion

mz+cz<+ R(Z)=F(t), (9.1)
1 R(z) =2
T~V —
7 = m
/ ¢

T

Fig. 9.1 The SDF System

where the mass (m) and the damping ratio (c) are J&tcr.inistic.
f(t) is the random excitation, (i, ;, z)} are respectively the dis-
placement, velocity and acceleration responses of the system, R(2)
is the displacesent-related nonlinear systea hysteretic force. The
hysteretic restoring force is characterized by the msaterials,
which can be elasto-perfect plastic, work-hardening, or stiffness/
strength degradation [13,17,211. The property of stiffness/
strength degradation, shown in Figure 9.2, is the typical behavior
of concrete structures subject to strong excitation. As a result,
the energy dissipates through the hysteretic loop. The energy
dissipation (u) is thus defined as:

/,:fwﬁ;*
o

v Pas

Displacement (mm)

Load (KN)

Fig. 9.2 Typical Behavior of System Degradation
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z (L)
us= j RCE) dF, 9.2)
o

which represents the area under the hysteretic loop. It has been
demonstrated in [13) that the asount of energy dissipation can be
. used as an indicator for the dasage level, which is associate with
the diminishing of strength and stiffness of the structure. How-
ever, currently the amount of energy dissipation is very difficult
to measure, especially for a continuous structure. In view of
this problem, we introduce

q(t) = ausat, (9.3)

which represents the energy dissipation rate. Hence, the equation
of smotion (9.1) becomes:

mZ4+cz+qlt)rz =€(t). (9.4)

Since q(t) represents the rate at which the energy is dissipated
through the hysteretic loop, it can be viewed as a gtructural
power, which is an important characteristic of a structure. 1f
qi{t) can be expressed in terms of seasured responses, damage then
can be identified by using q(t) as a damage indicator. Therefore,
if we introduce the normalized kinetic energy (T), such that

T = 22/2, (9.5)

the equation of motion (9.4) is thus formulated as:

2cT + q(t) = §(t) z — & 3T/at. (9.6)

The foraulation (9.6) can be applied to the following problems:

(i) For an undamaged structure, the value of the structural
power can be identified by computing the velocity and a con-
trolled excitation. Such process constitutes the nonlinear

system identification.




‘

(ii) For a damaged structure, the value of the structural pow-
er will diminish as compared to that of the undasaged struc-

ture. In order to assess the extent of damage, the value of
the structural power of a damaged structure sust be deterain-
ed. It can be done by using the process as discussed in (i).

(iii) If the velocity response is monitored during field
excitation, such as earthquake, the value of the structural
power can be estimated during the course of the excitation.
With the estimated value of q(t), the damage status at the
end of excitation can be readily enumerated.

9.2 Discussion Of Structural Power:

The structural power, as defined in Sec. 2.0, is frequency de-
pendent. To demonstrate the characteristic of frequency dependen-
cy, the O-hysteresis sodel, one of the proposed models for the be-
havior of stiffness/strength degradation, is adopted here to simu-
late the structural response. The excitation illustrated first is
a4 narrow banc cosine wave random excitation:

f(t) = A cos (u‘t+8), (9.7)

where A is the amplitude, the phase angle § is a raidom variable
with unifors distribution between 0 and 2x. When the system, as
in Figure 1, with the restoring force characteristic shown in Fig-
ure 9.3, is excited by the loading given by (9.7), the energy dis-
sipation is computed, for three different excitation frequencies
-— 123, 61.5, 30.75 rad/sec, Figure 9.4. The figure shows that
the structural power, the slope of the energy curve, is constant
for a specific narrow band random excitation.
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Fig. 9.3 The @-hysteresis Fig.9.4 Energy Dissipation for

Narrow—band Excitation

To characterize the structural power of a systea subjected to
wide band random excitation, the excitation will be expressed as:

N
: f(t) = £ A cos(e t+d ), (9.8)
i=~N
. where Ai' i=-N,..,N, are constant, "i are the frequencies uniforam~

ly distributed between the frequency spectrua range (-100, 100)Hz,
and the phase angles are random variables with unifore distribu-
tion between (0,2x). With the same structural system, the normal-
ized energy dissipation, which is defined as the energy dissipa-
tion from @-hysteresis norsalized by the quarter cycle energy dis-
sipation at failure, was computed for S50 different excitations, gi-
ven by the wide band excitation (9.8). The results are shown in
Figure 9.5, from which, the structural power can be assuaed as
constant with the following statistics:

Elq(t)] = 0.116 j/s = constant,
Standard deviation of q = 0.011 j/s.

Furtheraore, in order to illustrate the profile of the struc-

tural power vs the frequency, the same structural system is excit-
- ed by the excitation as given in (9.7), with frequency ranged from

~48-




1.9

Normalized Energy Dissipation

Fig.5S Energy Dissipation Sequence for wide-band Excitation

0.05 to 50 Hz. The results, shown in Figure 9.6, illustrate that
the structural power (q) decreases as the excitation frequency in-~
creases. The maximum value of q occurs when the excitation fre
quency is in the neighborhood of the natural frequency.

Finally, in order to demonstrate the influence of the ampli-
tude of the excitation on the structural power, the same structure
system is excited by a sequence of different amplitude loadings.
Figure 9.7 plots for 3 different frequencies (0.5, 1.0, 3.0 Hz)
the resulting structural power vs the excitation amplitude, normsal-
ized by the yielding strength. It readily shows in Figure 9.7,
that as excitation amplitude rises the value of the structural
power also increases.
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?.3 Lonclustion:

The technique of using structural power to assess the nonlin-
ear structure requires the ssasuremsent of the structural velocity
response which can be obtained by integrating the acceleration res-
ponse. Therefore, it can be applied to the dasage assesssent con-
veniently. It was demonstrated that, generally, the structural pow-
er possesses a constant value for a specific excitation, either
narrow or wide band. The characteristics of constant value can be
further assumed as a random variable if the excitation is random.
Such assumption simplifies the random analysis for structural res-
ponse. The application of using structural power in random vibra-

tion analysis is discussed in [233.
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